### Wide Area Precision Surveillance

### NASA Integrated CNS Conference and Workshop



Alex Smith
Rannoch Corporation
May 2002

### Rannoch Background

- Established over 10 years
- Implements surveillance solutions
  - Government, commercial
- AirScene product used for airport management, including:
- Airline operations
- Air traffic control
- Airport operations
- Environmental mgmt
- Security management



### System Features

- Scalable Airport Management Solutions
- Modular Enterprise Software
- Integration of Management Activities
- Real-time Precise Tracking
- High Update Rate Surveillance
- Can be Independent of ATC Systems
- TIS Broadcast
  - 1090 MHz, VHF, Voice

# Wide Area Challenges & Techniques

- Synchronization of Sensors
- Traffic Density
  - Sensor communication bandwidth
- Terrain/Topography
- Physical siting of sensors
- Traffic Mix
  - Mode A/C/S/ADS-B
- Active/passive techniques



### System Features

- Passive or active
- Small compact Sensor Stations
- Separate receiver for mast mounting
- Satellite synchronization, siting flexibility and higher availability
- Wide area application
- Choice of communications available
- Sensors conduct self-survey



# **Compact Sensors**







- Sensor controls
- Decode modes
- Remote monitoring
- Configuration and initialization
- Filtering
- Site Surveying
- Similar for interrogators



### Portable Systems



 Uses radio links for communications including digital cellular links



### Central Server



- AirScene Server & Maintenance Display
- En Route Air Traffic Control Center
- Main Equipment Room
- Approach Control
- Hot Standby

### Strathmore



### Yarmouth



Turner Vallev





### Comparison with Radar

- Several installed wide area systems – Japan, Canada, U.S.
- U.S. Volpe Center Developed Candidate Reqs
- Based on current specs for FAA's ATCBI-6 radar

| Accuracy   | Value     |
|------------|-----------|
| Element    |           |
| Range      | +/- 7.5 M |
| Jitter     | RMS       |
| Range Bias | +/- 10 M  |
| Azimuth    | +/- 0.033 |
| Bias       | deg       |
| Azimuth    | 0.066 deg |
| Jitter     | RMS       |

### Sensor Geometry

#### **Best of Triads**



### Flight Tests

- Jet and Turbo prop aircraft
- Mode A/C.S transponders
- Post Processed DGPS truth source
- Radar comparison, post processed
- Procedures
  - Radials, approaches, departures

# ILS Approaches



## Approaches



### Closely Spaced Parallel Approaches







### **ATC Displays**



### Flight Tracks – 2D View



# Traffic Replay



### 3D View With GIS/Terrain Data









### AirScene Multilateration For Non Movement Area/Ramp Surveillance

- ASDE-3 has limited coverage of nonmovement areas
  - Crossing taxiways
  - Pushback identification and sequencing
- Coordination with FAA, Airlines, FAA, Airport Authorities, ARINC







### Summary

- Wide Area Surveillance Feasible
- Satellite Synchronization
- Flight Trials
  - Radar Accuracy
  - High Update
- Variety of Applications
  - Airport Management
  - Air Traffic Control